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 ABSTRACT 
 

Purpose:  To examine the validity of the SenseWear Pro3 armband in 
estimating energy expenditure during a wide range of field-based activities. 

Methods: 41 participants (mean age = 34.5 + 11.7 yrs.) performed one of 
two routines with 6 activities each, Routine 1 (Outdoor Aerobic Activities) or 
Routine 2 (Indoor Home-based Activities), while wearing the SenseWear Pro3 
(SW) and the Cosmed K4b2 portable metabolic unit.  Routine 1 (n=16) included 
road walking, track walking, walking with 6.8 kg (15 lb.) bag, singles tennis, track 
running, and road running.  Routine 2 (n=25) included TV watching, reading, 
doing laundry, ironing, light cleaning, and aerobics.  Each activity was done for 
approximately 10 min with a 3-5 min break between activities with resting 
measurements taken for all participants before routines. 

Results: The mean differences (Cosmed-SW) in average MET values for 
Routine 1 were: road walking (-1.0, p<0.001), track walking (-0.9, p<0.001), 
walking with bag (-0.7, p<0.01), tennis (1.7, p<0.001), track running (2.7, 
p<0.001), road running (2.7, p<0.001).  For Routine 2, mean differences were: 
watching TV (-0.1, p>0.05), reading (-0.1, p>0.1), laundry (0.1, p>0.1), ironing    
(-1.3, p<0.001), light cleaning (-0.4, p<0.01), and aerobics (0.4, p>0.1). 

Discussion:  Compared to indirect calorimetry, significant differences in 
average MET levels by the SW Pro3 armband were found for several activities 
with a trend for EE underestimation at higher intensities (r=0.72, p<0.01). The 
SW significantly overestimated MET levels of ironing, light cleaning, and all three 
walking variations, and it significantly underestimated tennis and both running 
bouts. Algorithms need to be refined for more accurate EE estimations at high 
intensities and in different field-based activities. 
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 CHAPTER I 

INTRODUCTION  

 

Physical activity has been shown to confer numerous benefits such as 

decreased risks of cardiovascular disease, type 2 diabetes, obesity, 

osteoporosis, and premature morbidity and mortality (34, 51, 71, 72).  Despite 

these known benefits, 2005 CDC results from the 1994-2004 Behavioral Risk 

Factor Surveillance System (BRFSS) indicated that 23.7% of U.S. adults 

participate in no leisure time physical activity (11).  Furthermore, only 49.7% of 

men and 46.7% of women reported engaging in regular physical activity, defined 

as meeting the American College of Sports Medicine, American Heart 

Association and Healthy People 2010 recommendations (12).  These current 

recommendations suggest that healthy adults aged 18 to 65 years should 

perform “moderate intensity aerobic (endurance) physical activity for a minimum 

of 30 min on five days each week or vigorous intensity aerobic physical activity 

for a minimum of 20 min on three days each week” (28).  In order to be counted 

towards the daily recommendation, activities should be performed in bouts of ten 

minutes or longer.  Light intensity activities of daily living such as grocery 

shopping do not fulfill the daily recommendation but are encouraged.  However, 

normal daily activities of moderate or vigorous intensity which are at least 10 min 

in duration may be included as part of the recommended amount.  
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 In order to determine the efficacy of these recommendations, objective 

measures of daily physical activity, including the intensity of such activity, and the 

associated energy expenditure (EE) are needed.  One method, doubly labeled 

water (DLW), is considered by many to be the gold standard of EE assessment 

(57, 58, 60).  This method is based on the principle that the labeled hydrogen will 

leave the body as water and labeled oxygen will be eliminated as water and 

carbon dioxide.  By determining the amount of carbon dioxide produced, the 

researcher may calculate the amount of oxygen consumed and thus the total EE 

over a certain time period – generally a few days or a week.  Unfortunately, this 

method is lab-based, cost-prohibitive, and cannot give details regarding activity 

intensity, duration, or activity-specific energy expenditure.  When using DLW, 

physical activity energy expenditure (PAEE) must be calculated, rather than 

directly measured, by taking the difference between total energy expenditure and 

resting metabolic rate (60).   

In an attempt to overcome these limitations, indirect calorimetry (IC) 

instruments such as metabolic carts or portable metabolic units are frequently 

used to measure EE.  IC determines energy expenditure based on a specific 

volume of oxygen being consumed for every kilocalorie burned.  Some IC 

instruments such as the SensorMedics Vmax or Parvomedics system are 

confined to the lab, while others such as the Oxycon Mobile or Cosmed K4b2 are 

conducive to field-based research.  Several studies have validated the Cosmed 

K4b2 and its ability to accurately assess the energy expenditure of activities both 

in the lab and during lifestyle activities (22, 36, 44, 50).  These IC methods are 
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 capable of measuring both duration and intensity of PA as well as overall PAEE.  

However, in general, these instruments are bulky, require extensive calibration, 

and are best suited for research on EE of various activities but not for prolonged 

use in the field.  For these reasons, other more portable and user-friendly 

instruments are frequently tested against criterion methods (e.g. DLW or IC) to 

validate their estimations of EE in different contexts.   

Abundant research has been conducted on objective PA monitors 

including heart rate (HR) monitors, pedometers, accelerometers, and multi-

sensor models but, as of yet, no single instrument has been determined valid in 

all activities or with all populations.  Each instrument has limitations and 

circumstances where its validity is compromised.  For instance, HR monitors 

determine energy expenditure given that increased heart rate is linearly related to 

activity EE (25, 41, 65, 66).  Yet EE predictions may be skewed when HR is 

elevated due to emotional stimuli, body temperature, fatigue, caffeine, and other 

substances rather than by PA (13).  HR response is also largely influenced by 

age and fitness level.  In addition, HR predictions of EE are less valid at lower 

levels of PA, as are common in daily activities like light cleaning or watching 

television (41).  To acknowledge these limitations, researchers often use 

pedometers or accelerometers.  Pedometers are small and inexpensive, but data 

collection is generally limited to step counts and gives little information regarding 

intensity of PA.  Also, previous studies have shown pedometers are less valid at 

lower walking speeds and in obese individuals (6, 20, 21, 37, 70). In contrast, 

accelerometers can give information on frequency, intensity, and duration of 
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 activity.  Accelerometers rely on regression equations to convert raw activity 

counts into estimations of metabolic equivalents (METS) or kilocalories used.  

These equations are developed using a grouping of activities and must be 

validated when other activities are used (13, 19, 43).  Neither pedometers nor 

accelerometers have proven valid in certain activities such as cycling, 

weightlifting, and primarily upper-body activities, and they may not be used in 

water-based activities such as swimming.   

Because both pedometers and accelerometers rely on a single sensor to 

collect data for EE estimation, recent research has focused on new methods with 

a multi-sensor approach, such as the IDEEA (Intelligent Device for Estimating 

Energy Expenditure and Activity) monitor and SenseWear Armband.  The IDEEA 

monitor uses accelerometry sensors at five different body sites to determine the 

type of activity as well as speed, distance, and power output, and it has been 

validated against IC (76, 80, 81).  The SenseWear Armband uses an 

accelerometry sensor in addition to physiological sensors to measure near body 

and ambient temperature, heat flux, and galvanic skin response to determine EE.  

Though the SenseWear has been tested in several validation studies, a new 

generation of armband and software has recently been released with 

modifications to algorithms used for EE estimation. Results from previous studies 

are varied and may be attributed to different software versions or armband 

models.  Prior studies have also concentrated mainly on lab-based activities such 

as cycling, treadmill running, or arm ergometry, and few have addressed 

common daily activities such as reading a book, housework, or overground 
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 walking (27, 33, 35, 74).  In a lab-based study by Jakicic et al. (33), no 

significant differences were observed in EE estimates by the SenseWear for 

treadmill, cycle ergometry, and arm ergometry exercises.  In contrast, only one 

known study has compared SenseWear EE estimates to the Cosmed K4b2 in 

daily lifestyle activities (27).  Results of this small study showed significant 

(p<0.001) differences in PAEE estimates between methods.  A recent and 

thorough study of children by Arvidsson et al. (4) addressed a broad range of 14 

common activities, such as walking or playing cell phone games.  Authors found 

that, compared to IC, the SenseWear significantly underestimated EE in most 

activities.  This underestimation became greater as PA intensity increased (4).  In 

addition to the equivocal nature of existing SenseWear studies, validation of the 

SenseWear is further limited as previous studies have used small, narrow 

samples such as college students (33), obese individuals (16, 49), COPD 

patients (53, 69), and children (3, 4).  Consequently, the purpose of this study is 

to assess the validity of the SenseWear Pro3 Armband and accompanying 

software (version 6.1) in estimating EE of a heterogeneous group across a wide 

range of activities using indirect calorimetry as the criterion measure.  
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 CHAPTER II 

LITERATURE REVIEW 

        

Given the known benefits of physical activity, it is important that 

researchers are able to quantify frequency, intensity, and duration of daily 

activities.  From the 1982 study by Schoeller validating the doubly labeled water 

method to current studies of the SenseWear Pro Armband, there has been an 

overwhelming amount of research investigating energy expenditure during rest 

and activity (4, 60).  The breadth of this research continues to expand from strict 

laboratory studies to novel field-based approaches.  The validation of instruments 

which monitor physical activity and associated energy expenditure is paramount 

in many studies.  In order to refine physical activity recommendations, such as 

those published by the Centers for Disease Control and American Heart 

Association or the Surgeon’s General, accurate instruments must be available for 

research.  Abundant studies exist on the most common methods for energy 

expenditure assessment such as doubly labeled water, indirect calorimetry, heart 

rate monitors, pedometers, and accelerometers but research is limited on newer 

devices such as the SenseWear Pro Armband.  

 

Doubly Labeled Water 

The method often referred to as the “gold standard” for measuring energy 

expenditure is the doubly labeled water (DLW) method developed by Nathan 
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 Lifson (57, 58, 60, 61).  First validated in humans in 1982, DLW has since been 

used in almost 600 studies.  To use this method, subjects ingest isotope labeled 

water containing deuterium (H2) and oxygen-18 molecules.  As this labeled water 

disperses throughout the body, the deuterium molecules will leave the body as 

water in urine, feces, and sweat whereas the oxygen will be eliminated as water 

and in carbon dioxide.  After a subject ingests the DLW, he/she resumes normal 

activities and returns to the lab 3 days to 3 weeks later to provide a urine sample 

to determine the amount of isotope remaining in the body (59).  By measuring the 

difference in elimination rates of the hydrogen and oxygen, the carbon dioxide 

production is determined with a mathematical model.  A variety of equations have 

been tested but the equation which accounts for dilution space is the most 

frequently used (57).  However, no consensus has been reached on the best 

mathematical model to use.  Carbon dioxide production is then converted to 

energy expenditure by using heat production which is determined by reported 

energy intake and the calculation of the food quotient.  Because of this 

calculation, an accurate dietary record is needed during DLW measurement (62).  

Only a measure of Total Energy Expenditure (TEE) is directly obtained from the 

DLW method.  A review of validation studies by Schoeller found that the DLW 

method is accurate for estimating TEE between 2-8% with the range of variability 

due to loading dose, length of monitoring period, and the number of urine 

samples taken (57).  These studies included a wide variety of study populations 

with respect to age, diet, ethnicity, health status and daily physical activity 

patterns.  DLW is most accurate for TEE but is limited for prediction of physical 
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 activity energy expenditure (PAEE).  Rather than being directly measured during 

activity, PAEE is determined by taking the difference between total energy 

expenditure (TEE) and resting metabolic rate, with or without inclusion of the 

thermic effect of meals (58).  If an estimation error exists in TEE or RMR, it is 

transferred to the PAEE estimate (58).  In addition, DLW does not produce 

information on duration, patterns, or intensity of activities throughout the 

monitoring period.  Though daily urine samples can be made, these do not allow 

EE estimations for specific activities or time periods within the day.  Overall, the 

DLW method is well accepted for TEE estimations.  However, due to the high 

cost of O-18 labeled water, the lab-based nature of this method, and the 

limitations of its measurements, it is not practical for large studies or those 

focused on physical activity energy expenditure.  Consequently, researchers 

have validated other methods for these uses such as indirect calorimetry.  

 

Indirect Calorimetry 

In order to more accurately assess PAEE, indirect calorimetry (IC) has been 

validated whereby oxygen consumption and carbon dioxide production are 

directly measured to calculate energy expenditure (EE).  Common IC methods 

include metabolic carts such as the SensorMedics, and portable metabolic units 

such as the Cosmed K4b2 unit (Rome, Italy).  Portable metabolic units are 

particularly useful for EE estimations in field-based studies as they place little 

restriction on movement and can quantify intensity, duration, and frequency of 
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 activities.  One reliable method that provides accurate EE predictions against 

different criterion methods is the Cosmed K4b2 (23).  The Cosmed K4b2 is an 

updated model from the previously validated Cosmed K2 and Cosmed K4 (29).  

The Cosmed K4b2 system consists of a face mask secured by a headpiece, an 

analyzer unit, and a rechargeable battery placed in a harness.  Once calibrated, 

the Cosmed analyzer unit measures expired gases breath-by-breath via a 

Permapure tube connected to the facemask turbine flowmeter.  The oxygen 

analyzer has a reported range of 7-24% with an accuracy to 0.02%, and the 

infra-red carbon dioxide analyzer, not present in previous models, has a range of 

0-8% with an accuracy of 0.01% (52).  The bidirectional digital turbine and opto-

electric reader of the flowmeter have a linear response in the ventilation range of 

0-300L/min with an accuracy of + 2% (52).  Measured values include minute 

ventilation (VE), FEO2, and FECO2.  Oxygen consumption (VO2), Carbon dioxide 

production (VCO2), and respiratory exchange ratio (RER) are calculated values 

based on Haldane transformation using FIO2 (20.93%), FICO2 (0.03%), FEO2, 

FECO2, Vi (volume of inspired air), and VE.  The analyzer unit stores data during 

testing which is then downloaded to a computer for analysis with proprietary 

Cosmed software including algorithms to calculate energy expenditure.   

 In a study by McLaughlin et al. (44), the Cosmed K4b2 was validated 

against the Douglas Bag (DB) as a criterion method during cycle ergometry tests 

of varying intensities (50, 100, 150, 200, 250W) performed by young male 

subjects.  In these 5 minute stages, minute averages of the Cosmed values were 

used.   No significant differences were found for VO2 measures between 
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 methods at rest or at 250W.  However, Cosmed values were significantly higher 

than DB at 50, 100, 150, and 200W (p<0.05).  Yet, authors emphasized that the 

magnitudes of the differences were small, all less than 0.1L/min, and would be 

physiologically insignificant.  For VCO2, no significant differences were found 

between methods from rest to 150W, but the Cosmed was significantly (p<0.05) 

lower than the DB at 200W and 250W.  Because of the inaccuracies in VO2 and 

VCO2, R values were significantly different at every workload.  Most importantly, 

despite the aforementioned differences, the mean exercise energy expenditures 

calculated by both methods were not significantly different (11.0kcal/min for 

Cosmed versus 10.8kcal/min for DB).  A separate study by Parr et al. (50), also 

found the Cosmed accurately measured VO2, VCO2, and RER at lower 

intensities, up to 200W when compared to the DB method.   Both studies 

concluded that the Cosmed was accurate for EE estimation in separate bouts of 

varying intensities of physical activity, where the total EE as given by DLW would 

not be meaningful and where the DB technique would impair bodily movement 

due to its bulk (44, 50).  

Similar to the previous study, a study by McNaughton et al. (45) also 

supports the validity of the Cosmed to assess energy expenditure.  Using a mass 

spectrometer to measure the molecular composition of expired air, subjects 

completed submaximal and maximal cycle ergometry tests.  VO2 and VCO2 

values by the Cosmed were significantly higher than mass spectrometer values 

at 250W (p<0.05 and p<0.002, respectively) and at 300W (p<0.002; p<0.005) but 

did not differ significantly at lower workloads.  Despite the tendency throughout 
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 all workloads for the Cosmed to overestimate, the differences between VO2 and 

VCO2 levels remained relatively constant to create Cosmed RER values that did 

not differ from those of the mass spectrometer.   Despite some variation in 

methods’ estimations, authors concluded that either system is appropriate to use 

for EE estimations across a wide range of exercise intensities (45).  Two 

additional studies support the use of the Cosmed in maximal cycle ergometry 

(22, 36).  In both studies, the Cosmed was compared to laboratory metabolic 

carts and no significant differences (p<0.05) were found between VO2 

estimations by the two methods. 

 Unlike the previous cycling studies, one study examined the Cosmed 

during treadmill running at various speeds (8, 11, and 14 km/hr) (52). Estimations 

by the Cosmed of FEO2, FECO2, VO2, VCO2, and VE were compared to 

measurements by a Servomex oxygen analyzer, Datex CO2 monitor, and Morgan 

ventilation monitor.  Primary findings indicated significant differences between 

the two methods for FEO2, FECO2, and VE (p<0.05).  However, strong 

correlation (r = 0.925-0.982) of these measures showed a consistency of 

Cosmed error.  The Cosmed overestimated VO2 by 8% and underestimated 

VCO2 by 3.2%, resulting in an underestimation of RER by 0.10 (12.0%) (52).  

Due to the pattern of estimation errors by the Cosmed, it was suggested that an 

adequate regression analysis could be used to improve the accuracy of VO2 

calculations and resulting EE estimations.  

The difficulty in comparing Cosmed validation studies is their use of varied 

criterion methods (metabolic cart, Douglas bag, and mass spectrometer).  
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 Despite some inconsistencies, the Cosmed K4b2 is one of the most well-

validated, portable IC methods.  Validation of this portable IC method allows its 

use as a criterion method against activity monitors.  Objective activity monitors 

such as heart rate monitors, pedometers, accelerometers, and, more recently, 

multi-sensor models are frequently used to estimate energy expenditure and 

other variables of physical activity given their lack of interference to normal 

movement.  Validation studies cover an expansive range of activities both in 

laboratory and in real-world settings.   

 

Heart Rate Monitors 

One of the most common methods to assess EE is heart rate (HR) monitoring.  

HR monitors are inexpensive, non-invasive, easy to use, and more conducive to 

testing lifestyle activities than IC, and they give information about activity patterns 

that DLW does not.  HR monitors have been repeatedly validated against ECG 

monitors to assess HR.  For example, one study by Treiber et al. (68), validated 

HR monitors against ECG for simple HR values in lab and field tests of children.  

Cycle, treadmill and various outdoor tests showed a very high correlation 

between methods (r = 0.94-0.99, SEE: 1.1-3.7 bpm) which is supported by 

additional studies in adults (8, 13, 40).  Although originally validated against ECG 

monitors, HR monitors have since been used for EE estimates against indirect 

calorimetry (40, 68).  EE estimates are based on the positive linear HR-VO2 

relationship (R2 = 0.5) during aerobic exercise, or at levels above basal EE and 
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 below maximal output (41, 63, 65, 66).  Once the VO2 corresponding to a HR is 

determined, heat production and consequently EE can be calculated through 

indirect calorimetry calculations.  However, this relationship varies by individual 

with fluctuations due to age, fitness level, activity mode, emotional stimuli, 

posture, fatigue, and stimulants like caffeine and ephedrine (31, 41, 66).  Also, 

deviation from this linear relationship has been shown at low levels of activity (47, 

63, 78).   

In order to increase accuracy of EE predictions, regression equations are 

developed for individuals.  One such regression equation is with the FLEX-HR 

method.  For this method, a HR-VO2 calibration curve is developed for the 

individual and then a certain HR (FLEX-HR) is identified which discriminates 

between resting and exercise HR (41).  The calibration curve is based on the 

individual’s HR-VO2 responses when lying down, sitting, standing, and during 

cycling and stepping exercises.  FLEX-HR is defined as the mean of the 

maximum HR when standing and the minimum HR when exercising.  Calibration 

curves allow a certain energy expenditure to be assigned for heart rates above 

FLEX-HR.  Below FLEX-HR is considered resting metabolic rate (RMR), and, 

during sleep, basal metabolic rate (BMR) is used to estimate EE.  Calibration 

curves and their regression equations typically account for age, gender, and 

fitness level of the individual (5, 25, 65).  A validation study by Livingstone et al. 

(41), assessed free-living EE using the FLEX-HR method against DLW.  Average 

FLEX-HR was 97 + 8 bpm. EE above and below FLEX-HR was summed for 24-

hours to give TEE estimates.  Results showed mean HR-TEE gave similar 
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 estimates to DLW-TEE over several days, overestimating 2.0 + 17.9% but not 

significantly.  However, individual errors were high and ranged from -22.2% to 

+52.1% showing this method was more accurate for group, rather than for 

individual estimates.  Individual errors in TEE prediction may be due to 

estimation, rather than direct measurement, of BMR during sleep.  Also, any 

errors in RMR measurement explain the imprecision of the FLEX-HR method at 

low activity levels, as in sedentary individuals, or in resting conditions (41, 63).  

At very high levels of activity, where HR is not close to or below FLEX-HR, the 

prediction of EE is more dependent on the accuracy of the FLEX-HR or particular 

regression equation used.   Using whole body indirect calorimetry as the criterion 

method, another study also assessed the validity of the HR monitor and the 

FLEX-HR method to measure TDEE and PAEE (63).  During a 22-hour 

monitoring period with four 30-minute cycling protocols of varying intensity, no 

significant differences were found between HR and IC estimations of TDEE and 

PAEE in any of the sex or exercise protocols.  The maximum error of TDEE was 

-15% to +20% (63). 

Whereas the FLEX-HR method develops calibration curves for individuals, 

other methods such as the Polar Heart Rate monitor use raw HR data and 

proprietary algorithms to determine exercise EE (17).  Stored data from the HR 

monitor may be analyzed by accompanying software to calculate HR 1-minute 

fluctuations and then EE (40, 68).  This technique may be more useful in large 

studies where the determination of individual HR-VO2 curves is not feasible (62).  

Validation of this HR method in lifestyle activities has demonstrated moderate 
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 correlation and some significant overestimations of EE by HR compared to 

indirect calorimetry.  For example, one study by Strath et al. (66) tested the Polar 

HR monitor against the Cosmed K4b2 during common activities of varying 

intensity such as vacuuming, gardening, tennis, and grocery shopping.  Results 

showed moderate correlation (r = 0.68) between HR (bpm) and VO2 (ml/kg/min) 

during moderate intensity activities, with HR accounting for 47% of the variability 

in VO2 (66).  Furthermore, measured EE by the Cosmed against estimated EE by 

HR showed a correlation of r = 0.87, SEE = 0.76 METS after adjustments for age 

and fitness level.  In a separate lifestyle activity study, the HR method 

significantly overestimated EE (mean difference = 0.4 METS, p<0.001) during 

various intensity activities (range = 2.1 to 6.1 METS).  Part of this error may be 

due to the observed inability of the Polar monitor to record EE at rest and with 

light intensity activity; EE estimates may only be made when HR is > 90 bpm or > 

60% HR max (17).  In contrast, in a lab-based study comparing the Polar S410 

HR monitor to IC during cycling, rowing, and treadmill submaximal tests, the HR 

method gave reasonable predictions of EE.  Importantly, these are the activities 

for which motion sensors often fail to estimate EE accurately (17).  Other than EE 

prediction inaccuracies mentioned previously, the HR monitor also is limited 

because it takes 2-3 minutes for the HR to increase to a level representative of a 

particular activity unlike the immediate response of the motion sensors (66).  In 

addition, a significant (p<0.001) difference has been observed in EE estimates 

immediately following exercise due to the slower return of HR to baseline levels 

than IC (62).  EE prediction errors also occur during arm activity; the HR will be 
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 higher for any given VO2 during arm activity compared to lower-body activity or 

full body activity (65).  Overall, assessment of EE by HR monitoring has been 

validated with a wide range of subjects in both lab and field-based activities.  

Limitations of these predictions have been acknowledged such as reduced 

accuracy with low-intensity activities, differing age and fitness levels, improper 

PAEE and TEE estimates, and emotional influences, and they have often lead to 

the alternative use of motion sensors. 

 

Pedometers 

The pedometer is a commonly used motion sensor for monitoring PA.  In 

general, pedometers were designed to measure the number of steps and time 

spent in physical activity but not to describe intensity, type, or patterns of PA 

(16).  For example, in multiple studies, pedometers’ step counts have shown a 

strong correlation with time in observed activity (median r = 0.82, range = 0.42-

0.97) (16).  Measurement of the number of steps primarily is achieved by either a 

spring-levered or piezo-electric mechanism.  Spring-levered pedometers have a 

suspended lever arm that moves with vertical acceleration when walking.  Each 

time the spring-levered arm moves, a step is recorded because of electrical 

contact between two metal pieces.  In order to function properly, the monitor 

must be perpendicular to the ground (20).  In contrast, the piezo-electric 

pedometer has a weighted beam which, upon detection of acceleration, 

compresses a piezo-electric crystal which generates an electric current and 
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 subsequent recording of a step based on the acceleration-versus-time curve 

(20, 56).  Different pedometer models utilize different sensitivities and thus the 

amount of acceleration necessary to trigger a step varies.  Unfortunately, this 

contributes to the wide variability between models as evident in comparison 

studies of different pedometer brands (21, 55).  The validity of the Yamax DW-

500 was established as accurate within + 1% of observed step counts on a 

treadmill (6).  Because of this, one comparison study used the Yamax as the 

criterion model (55).  In this study of free-living activity, a significant (p<0.05) 

difference was found between 13 pedometer models with instances of both under 

and overestimation (55). Those models which were highly sensitive had a 

tendency to overestimate number of steps, while those which were less sensitive 

were more likely to underestimate (55).  Authors suggested more 

underestimation with models that begin counting steps only after 4 consecutive 

steps.  Other general limitations of pedometers include inaccuracies resulting 

from variations in stride length, walking speed, and adiposity.  Although total 

distance walked may be a desired outcome measure, it relies on a calculation 

based on stride length.  The difficulty encountered with distance estimations is 

the variance of stride length over walking speeds.  If the walking speed is slower 

than average walking speeds, error is more likely in pedometer measures (6, 7, 

20, 21, 37, 55, 70).  The cause of this error has been suggested as decreased 

vertical acceleration at the waist during slow walking speeds (21).  For example, 

at 54 m/min, many pedometers underestimate steps and overestimate distance 

due to the shorter stride length with slower speed (5, 6, 21, 37).    This trend is 
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 also evident in the tendency of several models to overestimate distance at 

slower speeds (<80 m/min) and underestimate distance at faster speeds (21).  

Pedometers are fairly accurate both in step count (some models within + 1% of 

observed) and distance (within + 10% of observed) at an average speed of 80 

m/min (5, 21).  Additional error is seen in persons who have a shuffling gait, such 

as the elderly.  In these individuals, the shuffling is not likely to be detected as 

true steps, thus underestimating step count and distance (70).  Pedometer 

inaccuracies also occur in overweight and obese individuals; abdominal adiposity 

is thought to cause monitor tilt and consequent disruption of pedometer 

mechanisms (20, 70).  For spring-levered pedometers, significant (p<0.05) 

underestimation of step counts versus observed steps was seen for overweight 

and obese individuals performing various speeds of treadmill exercise.  In 

contrast, the piezo-electric models were not affected by tilt, and showed only the 

underestimation typical at slow speeds (20, 25, 38). 

Calculation of EE may be accomplished by assigning a certain kcal/step 

conversion based on individual characteristics such as gender, age, weight, and 

fitness level (5, 20, 70).  Whereas measures of steps and time in activity are 

often validated against direct observation, EE is generally validated with indirect 

calorimetry.  A large, multi-study review by Tudor-Locke (16) examined this 

weakness of pedometers.  Depending on the population and criterion method of 

EE assessment, only a moderate correlation was found between step counts and 

EE (median r = 0.68, range = 0.46-0.88).   For pedometers versus indirect 

calorimetry specifically, the correlation ranged from r = 0.49-0.81 (70).  For 
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 example, one validity study using lifestyle activities showed overestimation of 

net kcal EE in walking at speeds of 78-100 m/min but underestimation during 

other lifestyle activities.  Underestimations were especially common in activities 

with frequent arm use, pushing of objects, going up an incline, or using stairs (7). 

The most validated use of pedometers is in ambulatory activities with the 

number of steps or steps/day as the most useful output variables to eliminate 

opportunities for error through additional conversions as for energy expenditure 

(21, 25, 70).  Therefore, pedometers may be useful to compare step count levels 

and to show progression of a PA intervention between individuals and different 

populations but they are not ideal for determining PAEE (25, 39, 55). 

 

Accelerometers 

Like pedometers, accelerometers allow PA monitoring over longer time periods 

than can be afforded by indirect calorimetry, making them quite popular for 

research.  Although pedometers are generally less expensive, accelerometers 

can provide additional information about exercise intensity, duration, and energy 

expenditure.  As with pedometers, there are various models often with 

accompanying software for data analysis; common models include the Caltrac, 

Actigraph (formerly Computer Science and Applications (CSA) and 

Manufacturing Technology Inc. (MTI)), Actical, TriTrac-R3D, and Tracmor.  In 

general, accelerometers measure the acceleration of the body during activity 

which is proportional to the amount of muscular force generated (48).  The two 
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 basic types are uniaxial and triaxial accelerometers, with references to the 

anatomical planes in which acceleration is measured.  Based on voltage changes 

detected, the sum of these accelerations in a certain time period or epoch 

(ranging from 1 sec to 15 min depending on the model) gives the primary 

accelerometer output measure of “activity counts” (13).  The frequency detected 

depends on the model and may range from 1-64 Hz; higher frequency of 

movement necessitates a model capable of detecting higher frequencies (13).  

The activity counts generated may then be used to determine duration of PA at 

different intensities based on absolute cut-points or certain intervals of counts 

corresponding with light, moderate, and vigorous activities.  Several studies have 

investigated cut-points for different intensities with various accelerometers but no 

consensus has been reached (30, 67).  It is exceedingly difficult to identify cut-

points which will apply to all activity types, especially in distinguishing light and 

moderate activity (43). Some research has focused on the linear relationship of 

accelerometer counts to oxygen consumption or EE.  In a review of ten studies, 

the correlation found between accelerometer counts and IC in assessing EE 

ranged from r = 0.58- 0.92 (13).  In another review, similar correlations (r=0.62-

0.93) were reported between accelerometers and oxygen consumption in 

children and adolescents (62).  For both populations, the wide range of 

correlations is likely dependent on activities monitored, placement of 

accelerometer, and the monitor brand (75, 76).    

Activity counts are commonly analyzed using a variety of published 

regression equations to estimate EE based on age, body weight, movement type, 
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 and other variables.  The conversion of raw counts to more meaningful units 

such as MET values or kilocalories expended is made possible by metabolic 

calibration (75). For the Actigraph model alone, there are 15 different calibration 

equations available (18).  There has been extensive research validating the use 

of accelerometers and their calibration in a broad range of activities and 

populations, and a complete analysis of all models’ validities exceeds the scope 

of this review.  However, there are general trends which pervade across several 

of the most common accelerometers.  For example, it is well accepted that hip-

mounted accelerometers do not adequately measure EE of arm activity, 

differences in postures, walking on an incline or up stairs, carrying heavy loads or 

weightlifting, bicycling, or water activities (10, 13, 38, 39, 48).  Yet, considerably 

less agreement exists as to which regression equation is most accurate.  The 

first calibration equation was developed by Freedson et al. (24) using the CSA 

monitor (now Actigraph) and data for level treadmill walking and running.  Using 

this equation, rather than that provided by the manufacturer, results showed a 

high correlation (r = 0.91) between CSA counts and VO2 at intensities of 3.7-9.7 

METS.  However, later research using the Freedson equation showed that 

neither the CSA nor Caltrac was sensitive to grade changes with significant 

underestimations (p<0.01) at 3% and 6% regardless of treadmill speed (48).  

Furthermore, when this equation was applied to lifestyle activities, as in several 

studies, correlations between methods in measuring EE were much lower (18, 

39, 76).  For example, in a study by Welk et al. (76), predicted MET values from 

the CSA-Freedson equation strongly correlated with VO2 in treadmill activity (r 
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 =0.85-0.92) but this correlation decreased considerably with lifestyle activities, 

such as vacuuming, sweeping, and stacking groceries (r = 0.48-0.59).  In these 

lifestyle activities, the CSA, as well as two other accelerometers, significantly 

underestimated EE by 42-67% (p<0.001) (76).  Likewise, in a 7-day study of free-

living EE by Leenders et al. (38), PAEE estimated by the CSA-Freedson 

equation significantly underestimated PAEE compared to DLW (-59%, p<0.05).  

Similar underestimations were observed with the Tritrac accelerometer and its 

manufacturer’s regression equation; PAEE estimates were significantly 

underestimated (-35%, p<0.05) (38). 

Attempting to remedy the shortcomings of the Freedson equation, 

Hendelman et al. developed new regression equations based on walking and 

applied them to moderate intensity recreational and household activities (30).  

Using IC as the criterion, correlations between CSA counts and MET values were 

stronger for walking (r = 0.77, explaining 58.9% variance in EE) than for all 

activities together (r = 0.59, explaining 35.2% variance in EE).  Predicted MET 

values for golf and household activities were underestimated 30-60% (p<0.001) 

by using the regression equations developed (30).  Similar findings applied to 

another accelerometer, the Tritrac, that was also evaluated in this study (30). 

Rather than developing equations based on walking or running, Swartz et 

al. took a unique approach and used data from 28 different lifestyle activities to 

formulate new regression equations for use with the CSA monitor (67).  This 

study evaluated prediction equations from data of CSA devices at the hip, wrist, 

and the combined data.  Compared to IC, significant correlations were found 
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 between EE (METS) and CSA hip counts (r = 0.563, p<0.001).  The CSA hip 

regression equation explained 31.7% of the variance in EE whereas the 

combined hip-wrist model explained slightly more with 34.3% (67).  However, 

significant (p<0.001) underestimation was found for push-mowing EE and the 

energy cost of ironing, caring for children, and slow walking was significantly 

overestimated by the CSA (67).  Importantly, MET predictions by the Swartz 

regression equations for all other activities resulted in no significant differences 

between methods. 

In efforts to determine the most accurate regression equation, several 

studies compared the accuracy of various equations over a wide range of 

physical activities (7, 18).  In a study comparing four activity monitors (3 

accelerometers and 1 pedometer), three different regression equations were 

used to analyze CSA data including the one provided by the manufacturer, the 

Freedson equation, and the Hendelman equation (7).  In predicting EE (METS) 

across 28 different moderate intensity activities, mean error scores against IC 

ranged from 0.05 METS (Hendelman equation) to 0.97 METS (manufacturer’s 

equation) for all accelerometers.   All error scores were significantly (p<0.001) 

different from zero, except the Hendelman equation whose error scores did not 

differ from zero for any of the activities.  In contrast, the Freedson equation 

underestimated EE in all 28 activities.  Overall, correlation coefficients ranged 

from r = 0.32-0.62 for EE predictions versus IC, and, depending on the activity 

type, both under and over-estimation by monitors were observed.  In general, the 

monitors overpredicted the EE of walking but underpredicted common activities 
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 such as raking leaves, cooking, and housework. Such lifestyle activities tend to 

incorporate more of the activities which are notoriously underestimated by 

accelerometers due to the predominance of upper body motion and little vertical 

acceleration (7, 24, 30, 76).  In a similar study, Crouter et al. (18) examined EE 

estimations (METS) by three accelerometers and a total of 18 available 

regression equations versus IC.  Activities ranged in intensity from rest to 

vigorous and included many daily activities such as computer work and filing 

papers.  As in the previous study, monitors were found to overestimate EE during 

walking and sedentary activities but underestimate many other lifestyle activities, 

including significant (p<0.05) underestimations of vigorous activity (18).  For the 

activities considered, authors concluded that certain prediction equations were 

the most accurate: for the Actical- the double regression model, for Actigraph 

MET prediction – the Swartz lifestyle equation, and for Actigraph kcal/min – 

Freedson kcal equation (18).  As concluded by previous research, no model 

could accurately predict EE in all circumstances.  Based on this data, the authors 

developed a new approach to accelerometer data analysis whereby two 

regression equations are used instead of the previous studies’ single regression 

models (19).  In this new method, either a walk/run regression or a 

lifestyle/leisure time regression was used depending on the calculated coefficient 

of variation (CV) for accelerometer counts per 10 seconds.  The Crouter model 

was tested on the previous activity data and found to be more accurate in EE 

predictions and duration of PA at various intensities than any of the prior 

equations (18, 19).  Compared to IC, the Crouter method resulted in no 
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 significant differences in any of the activities for EE estimation (METS) or overall 

time spent in light, moderate, or vigorous activity (19).  In conclusion, the use of 

equations developed in the lab on locomotor activities such as walking or running 

tends to underestimate the PAEE when applied to more complex movements as 

in lifestyle activities whereas equations developed from data of field-based 

activities tend to overestimate PAEE of locomotor activities (18, 43, 76).  

Because individual regression models best predict EE for the activities on which 

they were developed, as of yet, no single calibration equation appears sufficient 

to assess all types of activities whereas using multiple models has yielded more 

accurate predictions (5, 7, 19, 43). 

 

Multi-Sensor Monitors 

To overcome the limitations of other activity monitors, multi-sensor models such 

as the IDEEA (Intelligent Device for Estimating Energy Expenditure and Activity) 

monitor and SenseWear (SW) Pro Armband (BodyMedia, Inc., Pittsburgh,PA) 

were developed.  For example, unlike most accelerometers’ use of a single 

regression equation to estimate EE, multi-sensor models often use activity-

specific regression equations based on the activity detected by the instrument.  

The IDEEA monitor uses electrodes at various body positions to classify postures 

and activities done by a subject based on accelerations in two orthogonal 

directions.  Processing software gives the following output measures: EE in 

kcal/min, speed, distance, power output, and an activity movement code (80, 81).   



www.manaraa.com

 

26

 In contrast to the accelerometry basis of the IDEEA, the SenseWear Pro3 

Armband takes a broader approach by including both an accelerometer and 

physiological sensors.  The SW uses a biaxial micro-electric accelerometer and 

also has sensors to detect heat flux, near-body ambient and skin temperatures, 

and galvanic skin response.  The bi-axial accelerometer detects acceleration in 

the transverse and longitudinal planes.  The proprietary heat flux sensor gives 

the change in skin temperature versus near-body temperature in order to 

calculate heat loss.  Galvanic skin response measures the conductivity of the 

skin, corresponding with evaporative heat loss and constriction or dilation of the 

vascular periphery.  In order to estimate total energy expenditure, the SW 

records 21 measurement parameters (35).  By combining the input from all 

sensors with programmed subject data (i.e. birthdate, gender, height, and 

weight), the SW distinguishes between periods of inactivity and activity, including 

sleep duration estimation, and applies activity-specific algorithms.  No 

information is available as to how raw data is weighted in these equations, since 

they are proprietary.  Output measures include duration and intensity of physical 

activity, number of steps taken, TDEE, and PAEE.  Because the SW is small, 

portable, and easy to use, it is an appealing alternative to the criterion methods 

of DLW and IC to measure energy expenditure both at rest and during physical 

activity; consequently, validation studies have been conducted using the SW 

against these methods.  Given the different generations of the SW armband and 

versions of the software and compounding this with the specific populations 



www.manaraa.com

 

27

 addressed, a substantial hurdle exists in comparing the results of all validation 

studies.  

 

Total Daily Energy Expenditure and Resting Energy Expenditure 

Several studies have focused specifically on the ability of the SW to assess Total 

Daily Energy Expenditure (TDEE) and Resting Energy Expenditure (REE).  In the 

only study to compare the SW to DLW, St. Onge et al. found a significant 

(p<0.01) underestimation of mean TDEE in free-living adults over a ten day 

period by the SW over DLW (2375 + 366 kcal/day vs. 2492 + 444 kcal/day, 

respectively) (64). However, there was a significant intraclass correlation (ICC) of 

0.81 (p<0.01) indicating that individual estimates by the SW were good.  A 

moderate and significant correlation (r = 0.86, p<0.01) was observed between 

the two methods.  No conclusions may be made about day-to-day estimations 

because DLW data was given only for the 10-day period. Though not the primary 

purpose, PAEE estimations were also compared.  As with TDEE estimates, the 

SW significantly underestimated PAEE with a mean difference of -225 kcal/day 

(p<0.01) and an ICC of r = 0.46 (95% CI 0.19-0.67, p<0.01) (64).  Lower 

correlation (r = 0.70, p<0.01) was observed for PAEE than for TDEE estimations 

by SW against IC.  As mentioned previously, DLW can only estimate PAEE by 

subtracting resting metabolic rate and thermic effect of a meal from TDEE.  As 

such, it is uncertain whether the PAEE estimation error was due to DLW 

equations or the SW armband estimates. 
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  More common than the use of DLW is the use of indirect calorimetry to 

validate the SW.  Two separate studies have validated the use of the SW to 

measure REE against metabolic cart (SensorMedicsVmax 29N) estimations 

during simultaneous measurement (26, 42).  Both studies used healthy, normal 

weight adults and, despite using two different versions of the SW software (v. 1.0 

and v. 4.0), found no significant differences between methods in REE 

estimations.  Both studies reported significant strong correlations (r = 0.76, 

p<0.004 and r = 0.86, p<0.0001) between SW and IC.  In unique populations 

such as the morbidly obese, the validity of the SW to assess TEE may be altered 

as demonstrated by Cristofaro et al. (16).  In comparing the SW to a metabolic 

cart (SensormedicsVmax 29N), there was significant (p = 0.009) overestimation 

of TEE by the SW (2002 + 433kcal/day) versus IC (1742 + 403kcal/day) (16).  

Conversely, in a large study of obese individuals there was a significant 

underestimation of REE by the SW (mean difference of 8.8%) compared to the 

SensorMedics, despite a significant correlation of REE estimates (r = 0.85, 

p<0.001) (49).  As noted in several studies, as EE increased, so did the 

difference between methods (33, 49).  As suggested in another validation study, 

the tendency for fat accumulation in the upper arm region of SW placement may 

be a contributing factor to these inaccuracies (14). 
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 Physical Activity Energy Expenditure 

Lab-based Studies 

Although it is encouraging that the SW has been validated for TDEE and REE 

assessment in some populations, the validation of PAEE estimation has been 

more intensely examined.  Several studies have investigated the SW validity in 

lab-based settings using treadmills, cycle ergometers, arm ergometers, and stair-

stepping while a few have assessed validity in field-based settings.  Lab-based 

studies are often useful due to the level of test control such as for the intensity or 

duration of exercise.  The results are equivocal perhaps because of the variety of 

criterion methods, SW models, and software versions used in the research.  One 

of the earliest studies to test SW validity was that of Fruin and Rankin using the 

first armband model and first software version (which lacked exercise-specific 

algorithms) (26).  After initial EE estimates by the accompanying software, raw 

data was sent to BodyMedia, Inc. for analysis with contextual information 

including time and type of activities; EE estimates were then returned to the 

authors.  As might have been expected with novel exercise-specific algorithms, 

SW results showed significant differences from IC estimates. Using young adult 

participants for 30-minute treadmill tests at three intensities (80.5 m/min, 0% 

grade; 107.3 m/min, 0% grade; 107.3 m/min, 5% grade), moderate correlations 

were found between methods (r = 0.47-0.69).  However, the SW was found to 

significantly overestimate EE of walking with no grade (13-27%, p<0.02) and 

significantly underestimate walking with 5% grade (22%, p<0.02) (26).  According 

to the authors, similar magnitudes of over- and under-estimation for treadmill 
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 exercise have been reported in triaxial accelerometer studies, suggesting the 

possible importance of the armband’s accelerometer data in the EE algorithm 

used.  However, no significant differences between the SW and IC estimates of 

EE were found for a 40-minute cycle test of 60 rpm at 60% VO2peak but poor 

correlations (r = 0.03-0.12) were found between measures (26).  Shortly after this 

study both the armband and software were updated in attempts to increase the 

accuracy of the SW in measuring EE during exercise.   

 A lab-based study to develop and test new software was that of Jakicic et 

al. (33).  This study used two sets of algorithms (software version 3.2) to evaluate 

SW accuracy in healthy young adults.  Subjects completed 20-30 min bouts of 

increasing intensity on 4 exercise modes: walking, cycling, stepping, and arm 

ergometry, while simultaneously being monitored by both the SW and IC 

(SensorMedicsVmax or Parvomedics).  Energy expenditure (kcal/min) per 10-

minute bout and total kilocalories burned during exercise were the values used 

for analysis.  Results using the first general set of algorithms indicated significant 

(p<0.001) SW underestimation of total EE during walking, cycling, and stepping 

(mean difference 14.9 kcal to 32.0 kcal) and significant (p<0.001) overestimation 

during arm ergometry.  The overall bias for EE estimates showed that increased 

EE yielded a larger difference between SW and IC.  Intraclass correlations 

ranged from a low r = 0.28 (cycle) to a high r = 0.77 (walking).  Because of these 

profound inadequacies of the SW, BodyMedia used this data to create new 

exercise-specific algorithms which were used for a second analysis.  Because 

the type of exercise was known to those developing the algorithms, it is logical 
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 that large improvements would be seen in EE estimates compared to the 

general algorithms used previously.  Using the new set of algorithms, no 

significant differences were found in any of the exercise modes for total EE 

during exercise.  Unlike with the original analysis, no systematic bias was 

observed for EE predictions.  In addition, intraclass correlations were also 

increased for most exercise modes, but most profoundly for cycle ergometry 

(from r = 0.28 in first analysis to r = 0.89 in second analysis).  Based on the 

second set of algorithms, the preliminary accuracy of the SW during four 

particular exercises was established but needed further validation given the 

circumstances under which the algorithms were developed and data analyzed. 

 A study by Cole et al. (14) prompted additional software modifications to 

improve SW validity.  Unlike the healthy populations of prior studies, this study 

focused on a more narrow population of cardiac patients and total EE estimates 

during arm ergometry, treadmill, recumbent stepping, and rowing ergometry 

exercise in 8-minute bouts.  Intensity of the exercise was dependent on the 

individual and his/her rehabilitation.  For version 2.2, the SW significantly 

(p<0.01) underestimated EE during treadmill and rowing activities.  However, 

when version 4.0 with updated algorithms was used, no significant differences 

were found for any activities (p>0.2) although a tendency for the SW to 

overestimate EE with high intensity treadmill activity and to underestimate step 

and arm ergometry was noted.  Significant correlations between methods were 

observed with both software versions (p<0.05).  Further improvements in SW 

estimations were seen once BodyMedia created algorithms for this specific 
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 cardiac population.  Interestingly, in another study of obese individuals using 

similar activities (cycle ergometry, stair stepping, and treadmill walking), the 

same version 4.0 software did not yield similarly accurate estimates (49).  For 5-

minute exercise bouts, the SW significantly (p<0.05) overestimated all activities’ 

EE compared to IC and had poor intraclass correlation (r = 0.03-0.18).  Overall, 

based on these results and that of other studies, it appears the SW algorithms 

need further refinement to be valid in narrow populations such as obese 

individuals or cardiac patients (16, 49). 

 Using the same software version 3.0 as Jakicic et al. (33), a similar lab-

based study analyzed SW accuracy using various speeds of treadmill walking 

and running as the focus activities (35).  In addition to IC as the criterion 

compared to the SW, several accelerometer models (Computer Science 

Applications – CSA, Tritrac R3D, RT3, and Biotrainer Pro) were also used to 

estimate EE (kcal/min) during activity.  Given the frequency of accelerometer 

use, it is important to compare the differences in EE estimates obtained with the 

SW and the accelerometers.  The validity of the SW compared to accelerometers 

was confirmed in this study.  No significant differences (p>0.05) were found 

between any monitors’ EE estimates, at any speed.  Despite the previous study 

finding no significant differences between IC and SW (33), this study found 

significant (p<0.001) overestimation of EE for all monitors against IC, except for 

the CSA’s underestimation at two speeds (35).  Of all the monitors, the SW 

displayed the highest correlations to IC at all but the lowest speeds (r = 0.65 at 

54 m/min to r = 0.82 at 214 m/min).  These results indicated that the SW was 
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 more accurate for measuring total exercise EE than both uniaxial and multiaxial 

accelerometers for most walking and running speeds.  Yet, SW errors in 

estimation remain when compared to IC. 

 In contrast to the inaccuracies previously reported, several recent, small 

lab-based studies have supported the results of Jakicic et al. (33).  For example, 

one study had subjects perform a 60-minute routine combining short bouts of 

sitting, standing, and walking, and determined EE with SW and IC (46).  No 

significant differences (p>0.05) between methods were found in EE estimates for 

the entire session though estimates for specific activities were not given.  Also, 

significant correlations were found between methods (r = 0.71, p<0.05).  

Likewise, another study with alternating periods of rest, treadmill walking, and 

supine rest in 15-min increments showed significant correlations between SW 

and IC estimates of EE both for activities individually and overall (r = 0.79-0.95, 

p<0.05) with no differences reported between methods (74). 

 

Field-Based Studies 

Though not afforded the stringent conditions of lab-based studies, the results of 

field-based studies offer more applicability to everyday living and activity.  For an 

instrument assessing EE, its validity is equally important in both lab and real 

world settings.  Unfortunately, field-based studies or those with activities 

resembling daily life are underrepresented in SW validation studies.  However, 

several studies have provided good preliminary information on SW validity during 
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 lifestyle activity.  Only two SW validation studies with daily lifestyle activities 

have used IC as the criterion measure.  In the first SW study of children, by 

Arvidsson et al. (4), the PAEE of 20 children was measured by the SW and IC 

during rest (30 min) and a wide variety of activities (5 min each of playing cell 

phone games, using a stepboard, stationary cycling, trampoline, basketball, and 

walking and running at 8 different speeds on a treadmill).  Such activities are a 

clear departure from those in most of the previous SW studies but are indeed 

particularly common for the population of interest.  Using software version 5.1 for 

analysis, results indicated significant SW underestimation of all 14 activities, 

including rest, except for trampoline jumping and walking 2 and 3 km/hr (all 

p<0.001 except walking 4-6 km/h, p<0.05).  The most profound difference was 

noted in cycling with a 51% underestimation by the SW.  For all activities, the 

correlation between intensity of activity and difference between methods was -

0.58 (p<0.001); in other words, underestimation by the SW increased with 

increasing intensity.  As suggested by the authors, the inaccuracies of the SW 

may be due to the adult-specific nature of some algorithms (4).  Underestimation 

seen at increasing treadmill speeds is in contrast to the overestimation observed 

in a similar activity within an adult study (35) as well as in another study of 

children performing only treadmill exercise (3).  In the only other SW validation 

study of children, Andreacci et al. (3) found no significant differences between 

SW and IC estimates of EE during treadmill exercise at 1.7 mph, 2.5 mph, and 

3.4 mph in 8-min sessions. The mean absolute % error for EE estimation during 

the tests was 13.1%, 10.4%, and 9.6% for the increasing treadmill speeds, 
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 respectively.  However, this study used some of the subjects to develop new 

algorithms while the remaining children were used to validate the algorithms.  

Because the algorithms were formulated on this study, it is likely that estimations 

would be more accurate than in altered testing conditions or with different 

activities as in the Arvidsson et al. study (4). 

 Only one other SW study using IC closely replicates daily living activities.  

In addition, this is the only previous study to use the Cosmed K4b2 as the 

criterion measure.  In this small study of eight women, Galvani et al. (27) used 

the SW, Actiheart (AH), and Cosmed K4b2 to estimate EE during resting, 

occupation, housework, conditioning, and recreation activities.  Significant 

differences (p<0.001) were found between PAEE estimates by the SW and IC 

with a trend for the SW to underestimate PAEE at moderate and vigorous 

intensities (27).  However, strong correlations were observed between methods 

(SW and IC, r = 0.795, p<0.001; AH and IC, r = 0.785, p<0.001).  Compared to 

the AH, the SW produced lower systematic error in PAEE estimates of moderate 

and vigorous activities, indicating that for this study, the SW was more accurate 

than a heart rate monitor in EE prediction. 

 Given the challenges of using indirect calorimetry outside of the lab, 

several studies have opted to compare the SW to either a different activity 

monitor (IDEEA) or a subjective method of PA assessment (24-hour Physical 

Activity Recall (24PAR) and International Physical Activity Questionnaire (IPAQ)).  

Because the IDEEA also utilizes a multi-sensor approach, two studies have used 

it as the criterion method against which the SW was compared (9, 79).  In 



www.manaraa.com

 

36

 contrast to many previous studies, both studies assessed activity under free-

living conditions.  Because of this, PA duration (min), intensity (METS), and EE 

(kcal) could be determined.  In the first study by Calabro et al. (9), strong 

correlations (r = 0.81-0.89, p<0.05) and no significant differences were reported 

between IDEEA and SW for total EE estimates.  However, low correlations (r = 

0.38 to r = 0.60, p<0.05) were noted for estimates of moderate and vigorous PA 

duration (IDEEA: 149.9 + 78.5 min versus SW: 170.3 + 74.8 min).  In addition to 

duration estimates for moderate and vigorous activity, a second study of free-

living individuals by Welk et al. (79)  used slightly different measures including 

MET averages for activities and total EE in kcal/kg/day.  Before analysis, 

activities throughout a normal day were grouped according to IDEEA 

classifications (lie, lie variations, sit, sit variations, stand, stand variations, and 

walk).  For PA duration, both SW software versions (version 3.9 and version 4.1) 

resulted in estimates which were significantly different (p<0.05) from the IDEEA 

though high correlations existed between measures (r = 0.84-0.90).  MET 

estimates by the SW with software version 3.9 were significantly different 

(p<0.05) from the IDEEA but these differences were mostly resolved when 

version 4.1 was used.  With version 4.1, across the 7 activities, the EE estimates 

were within 0.01 METS with a mean bias of 0.15 METS.  For mean METS 

(kcal/kg/hr) in individual categories of activity, significant differences were only 

seen for sit variations, regardless of the software version used (p<0.05).  Without 

separating by activity group, the overall correlation for EE was better for version 

4.1 versus IDEEA (r = 0.82) than version 3.9 versus IDEEA (r = 0.71) indicating 
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 that useful adjustments had been made to the algorithms.  Based on the 

conflicting results of these studies, it appears that more investigations are 

needed with a variety of activities to determine if the SW and IDEEA are equally 

valid and if they may be used interchangeably. 

 Despite the paucity of data to support the SW as a valid measure in many 

diverse activities or in all populations, some studies have used it as the criterion 

objective measure against which subjective measures including the IPAQ and 

24PAR have been validated.  The computer-based 24PAR was found to 

significantly (p<0.05) overestimate EE (kcal/day) by a mean difference of 164 

kcal/day compared to the SW (77).  Correlation was high (r = 0.88) between 

measures for overall EE but lower when only moderate and vigorous PA were 

considered (r = 0.60).  Interestingly, overestimation of the 24PAR was similar 

when compared to the IDEEA in the same study with a mean difference of 

102kcal/day (p<0.05).  Although not addressed, this suggests that the IDEEA and 

SW are more similar to each other than to the subjective measures in EE 

estimations.  In a study by Wadsworth et al., validation of a 7-day questionnaire, 

the IPAQ, against the SW was even less successful than that of the 24PAR (73).  

Significant differences between methods were found for estimations of total days, 

minutes, and METmin/wk of moderate and vigorous PA (p<0.001).  Furthermore, 

no significant correlations were found for any variable (p>0.05).  Self report via 

the IPAQ was found to underestimate moderate activity and overestimate 

vigorous activity.  However, the results of these studies should be interpreted 

with caution until the SW is validated in more studies or until a more accepted 
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 measure of EE such as DLW or IC is incorporated into similar study designs as 

those previously outlined. 

 In conclusion, based on available studies, it appears the validity of the SW 

hinges on the ability of the software to apply appropriate algorithms to the raw 

data collected by the armband.  Because these are proprietary algorithms, the 

exact cause of these inadequacies is unknown.  One may postulate that less 

common and previously untested activities such as occupational or leisure 

activities would yield less accurate SW estimates of EE until new algorithms 

could be developed.  Such refinements could be based on new data as has been 

done previously.  Considerable holes still exist in current validation studies and 

necessitate future studies.  Problematic areas requiring further investigation 

include a wider variety of lifestyle activities (such as watching television or 

gardening), more frequent use of criterion methods outside of the lab, and the 

inclusion of more diverse populations. 
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 CHAPTER III 

MATERIALS AND METHODS 

 

Participants  

41 participants (23 male, 18 female) from the University of Tennessee campus 

and surrounding Knoxville community volunteered to participate in 1 of 2 physical 

activity routines.  Informed consent (Appendix A) was obtained from all 

participants and all methods were approved by the Institutional Review Board of 

the University of Tennessee-Knoxville.  Participants completed a brief health 

history questionnaire to determine their eligibility for inclusion in the study 

(Appendix B).  Potential participants were excluded from the study if they 

reported any contraindicating medications such as for seizures or heart 

conditions or if they indicated medical history that would preclude full 

participation, such as chest pain or cardiovascular events.  Participants were 

weighed and height was measured before instrument initialization.  Testing 

occurred either on campus, at the participant’s home, or at the investigator’s 

home.  Participants received $80 for their involvement.  All participant data were 

stored on a password-protected computer with confidential identification numbers 

used for all participants’ files. 
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 Procedures 

Routines 

Participants performed 1 of 2 routines, each with 6 activities in the following 

sequences: 

 

Routine 1 (Outdoor Aerobic Activities): Walking (self-paced on a road course) 

                 Walking (self-paced on a track) 

                 Walking with a 6.8 kg (15 lb) bag 

                 Singles Tennis 

                 Running (self-paced on a track) 

                 Running (self-paced on a road course) 

 

Routine 2 (Indoor Home-based Activities):  Watching Television 

                    Reading a Book 

                    Doing Laundry 

                    Ironing 

                    Light Cleaning 

                    Aerobics 

 

For Routine 1 (Outdoor Aerobic Activities), both walking and running 

activities were self-paced.  Distance was recorded to determine speed for each 

subject in these activities.  The road course was the same for all participants and 
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 for both walking and running.  This course included sidewalks, cross-walks, 

slightly hilly terrain, and normal pedestrian traffic.  The 6.8 kg (15 lb) bag was an 

over-the shoulder bag with textbooks to meet the weight requirement.  Track and 

road course activities were selected as to examine both continuous and 

intermittent walking and running conditions. 

 For Routine 2 (Indoor Home-based Activities), doing laundry included a 

combination of gathering clothes, loading the washing machine and/or drier, 

folding clothes, and putting clothes away.  Ironing included setting up the ironing 

board, filling the iron with water, and actual ironing of clothes.  Light cleaning 

included wiping off countertops or surfaces, dusting, straightening shelves, 

putting away small items, and other small tasks.  All participants performed the 

same aerobics routine using a 10-min segment from a commercial exercise 

video.  The intermediate-level aerobics’ activities included both upper and lower 

body movements while standing. 

 Routine 1(Outdoor Aerobic Activities) included 16 participants and Routine 

2 (Indoor Home-based Activities) included 25 participants.  No participant 

performed both routines.  If participants did not regularly exercise, they were 

included in Routine 2 rather than Routine 1 due to the nature of the activities.  

For both routines, each activity was performed for approximately 10 minutes with 

a 3-5 minute break between activities.  A 10-minute seated resting measurement 

was obtained before the start of each routine.  For rest and the six routine-

specific activities, subjects wore the SenseWear Pro3 Armband (BodyMedia Inc., 

Pittsburgh, PA), the Cosmed K4b2 (Rome, Italy), and 3 other activity monitors as 



www.manaraa.com

 

42

 part of a larger study to be discussed elsewhere.  The weight of all monitors (2 

kg) was added to subject data prior to testing and statistical analyses. 

 

Indirect Calorimetry 
 
The Cosmed K4b2 (Rome, Italy) portable metabolic system was used as the 

criterion measure of indirect calorimetry throughout all routines.  The Cosmed 

K4b2 is a breath-by-breath gas analysis system consisting of a face-mask, 

analyzer unit, and battery in a harness system.  Before testing each subject, the 

Cosmed analyzer was turned on for 45-60 minutes and then calibrated according 

to the manufacturer’s instructions.  Calibration of the analyzer included 4 parts: 

room air calibration, reference gas calibration (16.03% O2 and 3.98% CO2), 

turbine flowmeter calibration with a 3.0 L syringe (Hans-Rudolph), and CO2/O2 

delay calibration with the face-mask.  The analyzer unit was programmed with 

the participant’s data and the measured relative humidity of the testing location 

(to adjust for barometric pressure differences).  For each participant, a 

disposable gel-seal was used with the face-mask to prevent air leaks, and the 

facemask was secured with a mesh-cloth headpiece.  Before testing began, one 

exhalation by the participant allowed a final check for an airtight seal.  To 

eliminate possible complications of O2 analysis in extreme temperatures, the 

aerobic routine was not performed when the temperature was below 50°F (10°C) 

(15).  After testing, data were downloaded and analyzed by accompanying 

software (version 7.5a).  After each subject, the memory of the analyzing unit 
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 was cleared and its battery recharged.  All facemask and flowmeter parts were 

sanitized between uses.  To ensure reliability of Cosmed VO2 measures, 

calibration testing was conducted every ten subjects.  The same subject rode a 

calibrated Monark cycle ergometer at 1, 2, 3, and 4kp at 50 rpm for 6 min stages.  

Predicted VO2 values of 0.9, 1.5, 2.1, and 2.7 L/min were compared to measured 

values to confirm reliability of gas analyzers within + 100 ml/min (1). 

 

SenseWear Pro3 Armband 
 
The SenseWear Pro3 Armband is a small ((l) 85.3 mm x (w) 53.4 mm x             

(h) 19.5 mm, wt = 79 g) body monitoring system by BodyMedia Inc. designed to 

measure energy expenditure throughout daily living.  The water resistant 

armband was worn on the back of the right arm midway between the acromion 

and olecranon processes and was secured by an adjustable Velcro strap.  A 

display watch was worn on the right wrist and was synchronized with the 

armband when testing began to display current measurements.  The armband 

was placed on the arm 10 minutes before testing to allow sensors to adjust to 

skin temperature.  The unit does not require calibration and is battery operated 

(1-AAA battery allows 14 days of continuous data collection according to the 

manufacturer).  Before use, the armband was configured for the participant using 

a USB port and cable with the accompanying BodyMedia software (version 6.1)  

Configuration uses the subject’s gender, birth date, height, weight, handedness, 

and smoking status.  During the configuration, the armband was synchronized 
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 with the computer clock and the portable digital clock (stopwatch) used during 

testing to time activities.  All start and stop times of activities were recorded both 

in real time as used by the SenseWear as well as the display time on the 

Cosmed to allow minute-by-minute data comparison of the two methods.  Raw 

data collection by the SenseWear occurs in 1-minute periods by five different 

sensors on the armband including a biaxial accelerometer (transverse and 

longitudinal planes) and sensors to monitor heat flux, skin temperature, near 

body temperature, and galvanic skin response.  After routine completion, 

armband data were downloaded and saved to a computer via BodyMedia 

software and the armband’s memory was cleared for the next use.  Raw data 

were analyzed by proprietary algorithms to yield output measures including PA 

duration (min) and intensity (moderate (> 3 METS), vigorous (>6 METS), and 

very vigorous (>9 METS)), number of steps taken, and energy expenditure 

(METS and kcal/min). The armband and display watch surfaces and Velcro strap 

were cleaned with soap and water between uses. 

 

Data and Statistical Analysis 

The Cosmed K4b2 collected breath-by-breath data, but after downloading, data 

were filtered into 1-minute averages.  The SenseWear collected data in 1-minute 

periods.  For the Cosmed K4b2 data, software converted absolute VO2 values to 

relative values (adjusted for body mass) and then to MET values for each 

activity.  For the SenseWear data, proprietary algorithms and specific subject 
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 configuration produced average MET level data.  All Cosmed and SenseWear 

data were exported to Excel software.  For both instruments, the MET values 

were averaged over the last five minutes of each activity (excluding the final 

minute).  These averages for each activity were used in all statistical analyses for 

differences between methods. 

 Statistical analyses were performed using SPSS (version 15.0) for 

Windows (SPSS Inc, Chicago, IL, USA).  A repeated measures ANOVA (method 

x activity) allowed comparison of Cosmed MET values and SenseWear predicted 

MET values for each activity. Significance was defined as p<0.05.  Post-hoc 

testing with paired samples t-tests examined differences within each activity and 

used an adjusted alpha-level of 0.01 to control for Type I error.    To show 

individual data variability (Cosmed METS to SenseWear METS), a modified 

Bland-Altman plot was constructed including mean-error score and 95% 

confidence interval (8).  Data points above zero are considered an 

underestimation and those below zero are an overestimation.  Ideally, the mean 

differences between methods (Cosmed-SW METS) will have a small interval 

around zero, indicating good agreement with Cosmed actual METS. 
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 CHAPTER IV 

Results 

 

The participants’ characteristics are presented in Table 1.  Complete data 

were obtained for all participants with the exception of one missing SenseWear 

resting EE value and, for one participant, missing SenseWear and Cosmed 

values for singles tennis.   Wide ranges of age (21-60 years) and body mass 

index (17.7-38.9 kg/m2) were represented.  Walking and running speeds for 

Routine 1 participants are displayed in Table 2. 

For Routine 1(Outdoor Aerobic Activities), a significant interaction 

(p<0.001) was observed for method x physical activity.  Results of the t-tests 

showed significant differences in each activity of Routine 1 for SW versus 

Cosmed EE estimates (p<0.01).  The SW armband underestimated EE of singles 

tennis, running (track), and running (road course), and it overestimated EE of 

walking (road course), walking (track), walking with a 6.8 kg (15 lb) bag, and rest 

(Table 3). 

 For Routine 2 (Home-based Activities), analyses showed a significant 

method x physical activity interaction (p<0.001).  Post-hoc analysis revealed 

significant differences (p<0.01) only for ironing and light cleaning.  On average, 

the SW overestimated the EE of ironing by 1.3 METS and light cleaning by 0.4 

METS (Table 4). 
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Table 1. Participant Characteristics 

  
Males  

 
Females 

 
Combined 

(n=23) 
 
Mean (SD) 

(n=18) 
 
Mean (SD) 

(n=41) 
 
Mean (SD) 

Age (yr) 
 

32.4 (11.6) 37.3 (11.7) 34.5 (11.7) 

Weight (kg) 
 

80.0 (14.7) 69.2 (15.3) 75.2 (15.7) 

Height (m) 
 

1.77 (.09) 1.68 (.07) 1.73 (.09) 

Body Mass Index 
(kg/m2) 

25.5 (4.1) 24.6 (4.9) 25.1 (4.4) 

 
 

Table 2.  Walking and Running Speeds During Routine 1 (Outdoor Aerobic 

Activities) 

  
Males 

 
Females 

 
Combined 

 
 

(n=13) 
 
Mean (SD) 

(n=3) 
 
Mean (SD) 

(n=16) 
 
Mean (SD) 

Walking Speed 
(road) (m/min) 

86.8 (9.3) 89.6 (12.1) 87.3 (9.5) 

Walking Speed 
(track) (m/min) 

88.9 (9.8) 89.5 (8.8) 89.0 (9.3) 

Walking Speed 
(with bag) (m/min) 

85.8 (10.6) 82.2 (11.3) 85.1 (10.5) 

Running Speed 
(track) (m/min) 

175.3 (27.9) 159.9 (43.8) 172.5 (30.3) 

Running Speed 
(road) (m/min) 

176.3 (16.6) 161.3 (33.8) 173.5 (20.2) 
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Table 3. Comparison of SenseWear to Cosmed EE estimates in Routine 1 

(Outdoor Aerobic Activities) 

 
Activities 

 
Cosmed 
METS 
 
Mean (SD) 

 
SenseWear 
METS  
 
Mean (SD) 

 
Mean Difference 
(Cosmed 
METS-
SenseWear 
METS) (SD) 

 
95% 
Confidence 
Interval of 
the Mean 
Difference 

 
Walking  
(Road) 
 

 
4.0 (0.6) 

 
4.9 (0.8) 

 
-0.9* (0.6) 

 
0.7 to 1.3 

Walking 
(Track) 
 

4.0 (0.6) 4.9 (0.9) -0.9* (0.8) 0.5 to 1.3 

Walking with  
15lb. bag 
 

4.6 (0.7) 5.3 (1.0) -0.7** (1.0) 0.2 to 1.3 

Singles Tennis 
 

8.5 (1.5) 6.8 (1.2) 1.7* (1.3) -2.5 to -1.0 

Running 
(Track) 
 

11.4 (2.0) 8.7 (1.0) 2.7* (2.2) -3.9 to -1.5 

Running  
(Road) 
 

11.0 (1.5) 8.3 (0.7) 2.7* (1.4) -3.4 to -1.9 

Rest 
 

0.9 (0.2) 1.4 (0.4) -0.5* (0.4) 0.3 to 0.7 

* denotes statistical significance, p<0.001 
** denotes statistical significance, p<0.01 
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 Table 4.  Comparison of SenseWear to Cosmed EE estimates in Routine 2 

(Indoor Home-based Activities) 

 
Activities 

 
Cosmed 
METS 
 
Mean (SD) 

 
SenseWear 
METS 
 
Mean (SD) 

 
Mean 
Difference 
(Cosmed 
METS-
SenseWear 
METS) (SD) 

 
95% 
Confidence 
Interval of 
the Mean 
Difference 
 

 
Watching TV 
 

 
0.8 (0.2) 

 
0.9 (0.1) 

 
-0.1 (0.2) 

 
0 to 0.2 

Reading a book 

 

0.8 (0.3) 1.0 (0.3) -0.1 (0.3) 0 to .3 

Doing laundry 

 

2.7 (0.8) 2.6 (0.6) 0.1 (0.7) -0.4 to 0.2 

Ironing 

 

1.9 (0.4) 3.2 (1.0) -1.3* (0.9) 1.0 to 1.7 

Light Cleaning 

 

2.8 (0.6) 3.2 (0.7) -0.4** (0.6) 0.2 to 0.7 

Aerobics 

 

6.0 (1.3) 5.6 (1.1) 0.4 (1.3) -1.0 to 0.1 

Rest 0.8 (0.3) 1.0 (0.2) -0.1 (0.4) 0 to 0.3 

*denotes statistical significance with p<0.001 
**denotes statistical significance with p<0.01 
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 As measured by the Cosmed, the highest mean intensity was 11.4 METS 

during running (track) whereas the lowest mean intensity was 0.8 METS while 

watching TV.  Figure 1 displays mean MET estimations by both methods for all 

activities, in order of increasing values not necessarily routine order.  

 Modified Bland-Altman plots were conducted to show the difference 

between the two methods in average EE estimations.  Figures 2A-C show 

differences for routines individually and then for all data combined.  As seen in 

Figure 2-A, the correlation between activity intensity and the difference between 

methods for Routine 1(Outdoor Aerobic Activities) was r = 0.84 (p<0.01) 

indicating increasing underestimation of the SW with increasing activity intensity.  

In contrast, as seen in Figure 2-B, the mean difference values in Routine 2 

(Indoor Home-based Activities) were clustered more tightly around zero and did 

not exhibit a strong linear relationship (r = 0.37, p<0.01).  The smaller 95% 

confidence interval of the observations indicates a better agreement between 

methods through the range of intensities measured in Routine 2.  Combining the 

two routines in Figure 2-C, the trend for the SW to underestimate activities of 

higher intensity remained, though somewhat attenuated (r = 0.72, p<0.01).  

Figure 3 displays the percent differences between methods for all 

observations in both routines.  There appears a greater variance in under- and 

over-estimations at lower intensities, including several instances of 300-400% 

overestimation, than at higher intensities. 
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Figure 1. Energy Expenditure (METS) Estimations by Cosmed K4b2 and SenseWear Pro3 During a Wide Range of 

Activities 
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Figure 2. (A-C) Bland-Altman plots displaying differences (Cosmed-SW METS) 

for energy expenditure estimations. Solid lines represent the mean difference of 

the observations and dashed lines mark the 95% confidence interval for 

observations. 

(A) Routine 1 (Outdoor Aerobic Activities) 

 

R2 = 0.713 
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 Figure 2, continued. 
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(B) Routine 2 (Indoor Home-based Activities) 

 

 

 

 

 

R2 = 0.140 
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 Figure 2, continued. 
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(C) Routines 1 and 2 Activities 

 

 

 

 

 

 

R2 = 0.523 
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Figure 3.  Bland-Altman plot displaying percent differences between Cosmed and 

SW energy expenditure estimations.  Solid lines represent the mean percent 

difference of the observations and dashed lines mark the 95% confidence 

interval for observations.  Below zero indicates a percent overestimation whereas 

above zero indicates a percent underestimation. 

 

R2 = 0.210 
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 CHAPTER V 

DISCUSSION AND CONCLUSION 

 
 The goal of this study was to examine the validity of the SenseWear Pro3 

armband for estimating EE in field-based activities.  This is the first study to test 

this armband model and its accompanying software (version 6.1) with these 

types of activities.  Of the twelve activities tested, the SW was found to 

accurately measure EE in four home-based activities: watching TV, reading, 

doing laundry, and aerobics.  Because the SW is promoted as a useful tool to 

assess EE in daily life, the errors seen in the other eight activities are a cause for 

concern (2).  Though comparisons to previous studies are difficult due to 

differences in armband models or software versions, our results support several 

previous studies but conflict with others. 

 The most similar study to our methodology is that of Arvidsson et al. (4) 

which investigated the validity of the SW (software version 5.1) in children.  They 

examined 14 various common activities such as basketball, jumping on a 

trampoline, playing games on a cell phone, and walking and running at different 

speeds.  Compared to the Oxycon Mobile portable metabolic system, the SW 

underestimated EE in most activities, with the degree of underestimation 

increasing as the intensity increased (4).  Although we noted cases of both over- 

and under-estimation, we found a trend for the SW to underestimate at higher 

intensities (Figure 1).  During treadmill walking and running, Arvidsson et al. (4) 
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 found a correlation of  -0.71 (p<0.001) for the intensity of activity versus the 

difference between methods (SW-IC).  Likewise, in our Routine 1, which 

consisted mostly of walking and running activities, we found a correlation of r = 

0.84 using the mean difference between methods (IC-SW).  For all activities, 

their study found a correlation of -0.58 (p<0.001) whereas our overall correlation 

was r = 0.72 (p<0.01).   Depending on the activity, their mean error scores 

ranged from -3.5kcal/min (basketball, p<0.001) to 0.3kcal/min (walking 2.0km/h, 

p = 0.08).  Overall, our results confirmed this study (4) and others (14, 27) who 

noted a greater underestimation of EE by the SW as activity intensity increased.  

In addition, our study noted an overestimation by the SW during low intensity 

activities like walking.  Because our study used a road course for the walking and 

running activities, we conclude that the over- and under-estimations by the SW 

persist with intermittent as well as continuous walking and running.  Our road 

course included cross walks, hills, and normal pedestrian traffic yet results 

showed the same over- and under-estimations (SW walking = +1.0 METS, SW 

running = -2.7 METS versus IC) as continuous track activities (SW walking = 

+0.9 METS and SW running = -2.7 METS).  Although previous authors 

suggested these inaccuracies were due to the use of adult-specific algorithms in 

children, our results indicate that these errors persist in an adult population and 

might be due instead to the unique activity types (4).  In one sense, it is 

encouraging that the SW remained consistent in its measures, even if under- and 

over-estimations exist.  This result suggests that adjustments to algorithms would 
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 improve the estimation of EE in both lab and field-based walking and running 

activities. 

 The results of our study are also similar to those seen in the small study of 

Galvani et al. (27).  Although their study examined only 8 women, it is the only 

SW validation study to have also used the Cosmed K4b2 as the criterion 

measure to assess EE.  In addition, the categories of activities (occupation, 

housework, recreation, and conditioning) were similar to our study.  Although 

specific activities of this study are unknown, our activities could readily be 

assigned to one of these categories such as light cleaning to “housework” or 

carrying a weighted bag to “occupation.”  As with many of our activities, Galvani 

et al. (27) observed significant (p<0.001) differences between the SW and 

Cosmed for all PA categories.  (However, no statistical details regarding specific 

activities were provided.)  Their study found that the SW tended to underestimate 

EE at moderate and vigorous intensities.  Across all activity categories, the 95% 

CI of the errors was -5.07 to 4.85 METS whereas our study showed a smaller 

95% CI of -2.8 to 3.0 METS.  

 Our results contrast with a preliminary study on children by Andreacci et 

al. (3) which used treadmill walking (1.7, 2.5, and 3.4 mph). These authors 

collected SW and EE data for the purpose of helping to update the SW 

algorithms.  Thirteen of their subjects were used to develop new algorithms while 

twenty-one subjects were used to test these algorithms and their accuracy to 

predict EE during sub-maximal exercise.  Although their results showed no 

significant differences in SW and IC EE estimates, our results for walking were 
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 not as encouraging.  For all three walking bouts (road, track, and with a 6.8 kg 

bag), we found significant overestimations, despite using similar speeds.  Our 

three walking activities showed average speeds of 3.2 to 3.3 mph.  Based on our 

results, it appears that the algorithms, in their current form, are not applicable to 

populations outside of the sample on which they were developed. However, the 

proprietary nature of the algorithms prohibits conclusions regarding what has 

been modified and what has remained constant across software versions.  The 

software version used in the Andreacci et al. study (a version released in 2005) 

was different from the version used currently (version 6.1, released in 2007), so 

further comparisons are limited (3). 

 Continuous refinement and updating of the SW proprietary algorithms has 

taken place since the inception of the BodyMedia company.  The frequent 

modification of manufacturer algorithms is unique, but it limits accuracy 

comparisons between studies.  The use of study data to develop new algorithms 

is characteristic of several SW studies including those of Fruin and Rankin (26), 

Jakicic et al. (33), and Cole et al. (14).  As the first study to examine SW validity, 

Fruin and Rankin tested the first armband model and accompanying first 

software version.  This study used young adult participants for both 40-minute 

cycling tests at 60% VO2 peak and 30-minute treadmill tests at three intensities 

(80.5 m/min, 0% grade; 107.3 m/min, 0% grade, 107.3 m/min, 5% grade).  After 

initial analysis with accompanying software and its general algorithms, data were 

sent to BodyMedia with contextual information about exercise for a second 

analysis.  After using exercise-specific algorithms, results indicated that the SW 
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 accurately estimated EE during cycle ergometry.  In contrast, the SW 

significantly (p<0.02) overestimated (14-38%) EE of walking at 0% grade at both 

speeds and significantly (p<0.002) underestimated (22%) EE at a 5% grade.  The 

SW appropriately increased EE estimates with increased treadmill speed, but did 

not do so with increases in % grade.  This can be interpreted as evidence that 

the SW is using the accelerometer data to predict EE during walking/running, but 

during cycle ergometry (when no vertical accelerations are detected) it relies on 

the heat flux measurements to predict EE. 

 In the lab-based study by Jakicic et al. (33), young adults performed 20-30 

min bouts of increasing intensity on four exercise modes: walking, cycling, 

stepping, and arm ergometry.  The first analysis of data used general algorithms 

and showed the SW (software version 3.2) significantly (p<0.001) 

underestimated EE in walking, cycling, and stepping and significantly (p<0.001) 

overestimated EE during arm ergometry.  After sending data to BodyMedia with 

contextual information such as exercise time and mode, exercise-specific 

algorithms were used to perform a second analysis of data.  Exercise-specific 

algorithms showed no significant differences between SW and IC EE estimates 

in any of the tested activities.  In addition, the increased error of the SW to 

estimate EE at higher intensities as present with the general algorithms was 

eliminated with the exercise-specific algorithms. 

 The study of Cole et al. (14) prompted additional software modifications 

based on their specific sample.  Unlike the healthy populations of prior studies, 

this study used cardiac patients to test the SW and three software versions 
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 (version 2.2, version 4.0, and preliminary cardiac software).  Participants 

performed 8-minute bouts of arm ergometry, treadmill walking, recumbent 

stepping, and rowing ergometry with individualized intensities.  Using version 2.2 

for EE estimates, the SW significantly (p<0.01) underestimated EE during 

treadmill and rowing activities but accurately predicted the other two activities.  

Using version 4.0, no significant differences were found for EE estimates by the 

SW and IC for any activity.  However, significant biases for stepping and arm 

ergometry persisted in this software version.  The SW showed a clear tendency 

to underestimate EE in these two activities.  For rowing and treadmill exercise, 

the errors in estimated EE increased with increasing exercise intensity.  Given 

the unique population, BodyMedia developed cardiac specific algorithms based 

on some of the participants, and this preliminary cardiac software was then 

tested on the remaining participants.  Using this software, SW accuracy was 

further improved, resulting in no significant differences for EE estimates in any 

activity.  The errors in estimated EE were reduced compared to previous 

software versions.  The results of Cole et al. (14) and those of other studies (26, 

33) indicate the improvements made by software modifications.  However, the 

multiple versions of SW software highlight the difficulty in comparing results 

among several studies.  

 One of the strengths of our study was the types of activities selected.  Our 

activities focused on those which are common in daily life, as opposed to many 

previous studies which were confined to the laboratory.  If a device is to be used 

in a weight loss program or to measure and improve daily physical activity, it 
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 must be valid under a variety of conditions.  Our finding that common lifestyle 

activities like ironing and light cleaning were not accurately measured indicates 

that more field-based research and software updates are needed.  A second 

strength was that while other studies have used clinical populations such as 

obese individuals or cardiac patients, our study used healthy participants with a 

wide age range (14, 16, 49).   

 However, the current study also has several limitations.  First, although 

the sample size is similar to previous studies, a larger, more diverse sample (i.e. 

more females in Routine 1) would have increased the generalizability of our 

results.  Also, because all subjects did not perform all 12 activities, our ability to 

compare results between routines was limited.  For example, based on 

significant differences versus IC, it appears that the SW was more accurate at 

EE estimation for aerobics than walking despite the higher intensity of aerobics.  

Yet, because of distinct routine groups, the relative degree of error of two 

activities both showing significant overestimations (i.e. walking and ironing) 

cannot be easily established.  Future studies should consider using all subjects 

for all activities to circumvent this problem.   

 Given future modifications of SW algorithms and improved accuracy, the 

SW could be useful in a variety of clinical applications, because it is unobtrusive 

and easy to use.   For example, a recent study by Polzien et al. (54) highlighted 

the application of the SW in a weight loss intervention.  Continuous use of the 

SW and SW software with standard behavioral counseling produced significantly 

greater weight loss (p<0.05) than counseling alone.  Regardless of any 
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 inaccuracies which may or may not have occurred in estimating EE, weight loss 

was clearly improved by the SW concept.  These results bode well for future 

clinical and individual applications of the SW in weight loss programs.  Although 

not the focus of our study, the SW may be useful due to its ability to estimate 

TDEE (54). Traditionally, clinicians have predicted TDEE by using equations to 

estimate resting metabolic rate (RMR) and multiplying by a certain factor that 

represents the individual's self-reported physical activity status (32).  In contrast, 

the SW uses the multi-sensor approach, individual participant characteristics, 

and specific PAEE information to calculate TDEE.  Though our results do not 

validate the SW in all activities, its EE estimates are likely to be an improvement 

over the standard method of estimating TDEE.  Several past studies have tested 

the accuracy of the SW in TDEE and REE, but results are conflicting, in part due 

to different models and software used.  Given the amount of raw data provided 

by the SW software, there are many additional measures which could be 

examined from a clinical, rather than a research, perspective.  Based on the 

positive conclusions of Polzien et al. (54), future investigations are warranted for 

other SW clinical applications such as in weight management, nutritional 

counseling, and behavior modification.   

 Based on the current results, we can only recommend the use of the SW 

for accurate EE estimation in low-intensity activities (such as reading or doing the 

laundry).  However, given the inconsistency of SW accuracy across similar low 

intensity activities (such as light cleaning and doing the laundry), measurement of 

these activities should be approached with caution until similar studies are 



www.manaraa.com

 

64

 conducted to confirm or refute the results reported in this study.  EE estimations 

in other common activities such as walking and running at various speeds 

showed clear inaccuracies and necessitate future study.  In addition to accepted 

criterion methods, other future studies should investigate whether the accuracy of 

the SW exceeds that of other more common objective monitors such as 

pedometers and accelerometers.  Although not the purpose of this study, a 

preliminary comparison of the SW validity to the more commonly used 

accelerometers should be made.  One previous study by King et al. compared 

the SW to four accelerometers (CSA, TriTrac-R3D, RT3, and BioTrainer Pro) for 

estimating EE (35).  Healthy adult participants performed 10 minutes of treadmill 

walking (54, 80, and 107 m/min) and treadmill running (134, 161, 188, and 214 

m/min).   The SW, TriTrac-R3D, and RT3 showed significant (p<0.05) increases 

in EE estimations with increasing speeds whereas the CSA and BioTrainer Pro 

failed to detect EE differences above 161 m/min.  Compared to IC, all monitors 

significantly (p<0.001) overestimated EE across all speeds, except for 

underestimation by the CSA at 54 and 214 m/min and no significant difference 

for TriTrac-R3D estimates at 214 m/min.  This study concluded that, for treadmill 

activity, the SW provides the most accurate EE estimates across a wide range of 

speeds when compared to both uniaxial and triaxial accelerometers.  However, 

our results did not support this study.  Our results showed the SW overestimated 

EE during walking but underestimated EE during running.  Differences in results 

may be due to the earlier software version (version 3.0) or the controlled 

conditions of walking and running used by King et al. (35).  No similar study has 
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 been conducted using different activities, either lab-based or field-based, so 

further conclusions are limited. 

 

Conclusion 
 
This study assessed the validity of the SenseWear in energy expenditure 

estimation during a wide range of activities.  Compared to indirect calorimetry, 

significant differences in average MET levels by the SW were found for several 

activities with a trend for EE underestimation at higher intensities.  To our 

knowledge, this was the first study to investigate the SenseWear Pro3 and its 

use in common activities such as ironing, walking with a weighted bag, watching 

television, and aerobics.  Future studies are needed to confirm our results with 

possible modifications to proprietary algorithms to improve SW accuracy in field 

based activities. 
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 APPENDIX A 

 
INFORMED CONSENT FORM 

Physical Activity Assessment Using Variability in Accelerometer Counts 
 
Researchers:  

David R. Bassett, Jr.    Jere D. Haas 
University of Tennessee   Cornell University 
Dept. of Exercise, Sport, & Leisure Division of Nutritional Sci. 
1914 Andy Holt Ave.   220 Savage Hall 
Knoxville, TN  37919   Ithaca, NY 14853-6300  
Telephone: 865-974-8766   Telephone: 607-255-2665 
 

Purpose 
The purpose of this study is to develop a new method of analyzing human 
movement data, using a small device worn at the waist that measures vertical 
acceleration (an accelerometer). 
 
Procedures 
The testing will take place at one of three locations: the University of Tennessee 
(UT) in Knoxville, in a community setting such as your work place or home, or 
outside the UT Applied Physiology Lab. 
 
Testing Protocol 
We have already asked you to fill out a health history questionnaire, and 
determined that you are eligible for the study.  If you choose to participate, we 
will record your age, height, weight, and gender.  You will then be asked to wear 
an accelerometer and a portable metabolic system (described below).   
 
While wearing these devices, you will be asked to complete one of the following 
protocols (the one that is checked): 
 
___ Perform two bouts of predetermined activities (Either playing basketball, 
tennis, or raking leaves and walking at a moderate pace).  Before the activity, 
you will sit for 15 minutes.  You will then perform activity 1 for 8 minutes, followed 
by 8 minutes of seated rest; then you will perform activity 2 followed by 8 minutes 
of seated rest.  The total time commitment is 1 hour and 45 minutes. 
 
___ Perform six tasks from the following list: 
Watching television, driving a car, reading a book, self-paced track walking, self-
paced walking (road course), self-paced track running, self-paced running (road 
course), singles tennis, Frisbee golf, aerobics, doing laundry, ironing, light 
cleaning, using a string trimmer, gardening, moving dirt with wheel barrow, 
loading/unloading 15 lb boxes, walking a track course with a 15 lb computer bag.  
Each task will last 10 minutes and you will have 3 minutes rest between tasks.  
The total time commitment is 3 hours. 
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Physical Activity Monitors 
You will be asked to wear several small, electronic devices that are thought to 
provide accurate estimates of calorie burning.  Two of these are matchbox-sized 
devices worn on your belt or waistband.  Two other devices will be positioned on 
your upper arm and the ankle, respectively, using elastic bands.  These devices 
respond to body movements and they store this information, which will later be 
transferred to a computer.  The activity meter enables us to predict the intensity 
of physical activity bouts, and classify them as light, moderate, or strenuous.  It 
must be returned at the end of the study. 
 
Portable Metabolic System 
You will also be asked to wear a portable device called a Cosmed K4b2 
metabolic measurement system.  This is a little bit larger than a Walkman 
cassette player and it is worn on a harness strapped to your torso.   It is attached 
to a facemask that you will wear over your mouth and nose.  You can breathe 
normally, and even talk, when the facemask is in place. 

 
Risks and Benefits 
The risks of being in this study include injury to muscles and/or joints, dizziness, 
headache, abnormal heart rhythms, abnormal blood pressure responses, and in 
very rare instances heart attack and/or sudden death.  However, we will try to 
minimize these risks by using a health history questionnaire, and by selecting 
participants who are accustomed to regular, vigorous physical activity to perform 
the vigorous bouts in Part 2 (structured 10-minute bouts). The benefits to being in 
the study include the receipt of a report showing your test results, and payment 
($30 for part 1, or $80 for part 2). 

 
Confidentiality 
The information from these tests will be treated as private and will not be shown 
to any person without your consent.  The numbers may be used in research 
reports but your name or other identity will not be used. 
 
Contact Information 
If you have questions at any time concerning the study or the procedures, (or you 
experience adverse effects as a result of participating in this study,) you may 
contact David Bassett at (865) 974-8766.  If you have questions about your rights 
as a participant, contact the Research Compliance Services of the University of 
Tennessee Office of Research at (865) 974-3466. 
 
Right to Ask Questions and to Withdraw 
You are free to decide whether or not to be in this study and you may withdraw 
from the study at any time without penalty or loss of benefits.  Before you sign 
this form, please ask questions about anything that is unclear to you. 
 
Consent 
By signing this paper, I am indicating that I understand and agree to take part in 
this study. 
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Your signature      Date 
 
 
 
           
Researcher’s signature     Date  
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 APPENDIX B 

 
HEALTH HISTORY QUESTIONNAIRE 

 
 

Name:             
 

Address:             
 
City/State:        Zip Code:                              
Phone:        Date of Birth:                    
Age:     
 
Gender:   ___   M        F   UT Faculty/Staff:     Y           N   
Do You Live Alone?          Y           N 
 
Occupation:                    
Full Time?              Y           N 

 
Marital Status: (circle one)       Single       Married       Divorced      

Widowed 
 
Education: (check highest level completed)   
 
Elementary           High School           College           Graduate School____ 
 
Race:  White    American Indian/Alaska Native           Asian  ___     
  
Black / African American             Native Hawaiian / Pacific Islander     
 
Other _________ 
 
Ethnicity:  Hispanic or Latino_______   Not Hispanic or Latino ______ 
 
Personal Physician:        Location:    
 
 
Are you taking any prescription or over-the counter medication?

 YES           NO    
 
 
 
 

(Staff Use) ID# (Staff Use) DATE 
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 Name of Medication   Reason for Taking,   
For How Long? 

           
            
              

            
           

             
 
 

Emergency Contact 
Name:           

  
Relationship:     Phone:  Work:     
       Home:    

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PAST HISTORY 

Have you ever had? (please check all that apply) 

_____ Heart attack              _____ Stroke 

_____ Any heart problems          _____ Blood Clots 

_____ Arthritis                         Cancer 

_____ Recurring leg pain (not related to arthritis) 

_____ Liver or Kidney Disease 

_____ Any breathing or lung problems   

_____ Ankle swelling (not related to twisting) 

_____ Low back or joint problems 

  Diabetes 

PRESENT SYMPTOMS 
     Do you currently have? (please check all that apply) 
 
     _____ Chest pain / discomfort    _____ Cough on exertion 
  
     _____ Shortness of breath     _____ Coughing of blood 
 
     _____ Heart palpitations     _____ Dizzy spells 
 
     _____ Skipped heart beats     _____ Frequent headaches 
 
     _____ Chronic Fatigue Syndrome     _____ Orthopedic / joint problems 

     _____ Diabetes       _____ Back Pain 
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